
The Home Needs an Operating System (and an App Store)

Colin Dixon† Ratul Mahajan Sharad Agarwal

A.J. Brush Bongshin Lee Stefan Saroiu Victor Bahl

Microsoft Research †University of Washington

Abstract— We argue that heterogeneity is hindering tech-
nological innovation in the home—homes differ in terms of
their devices and how those devices are connected and used.
To abstract these differences, we propose to develop a home-
wide operating system. A HomeOS can simplify application
development and let users easily add functionality by in-
stalling new devices or applications. The development of
such an OS is an inherently inter-disciplinary exercise. Not
only must the abstractions meet the usual goals of being ef-
ficient and easy to program, but the underlying primitives
must also match how users want to manage and secure their
home. We describe the preliminary design of HomeOS and
our experience with developing applications for it.

Categories and Subject Descriptors
C.2.4 [Distributed systems] Network operating systems
D.4.6 [Security and protection] Access controls
H.1.2 [User/Machine systems] Human factors

General Terms
Design, Human Factors, Management

Keywords
Home networks, operating systems

1. INTRODUCTION
The vision of smart, connected homes has been around for

well over two decades. In this vision, users easily perform
tasks involving diverse sets of devices in their home without
the need for painstaking configuration and custom program-
ming. For example, imagine a home with remotely control-
lable lights, cameras, windows, and door locks. It should
be easy to set up this home to automatically adjust windows
and lights based on the outside temperature and lighting or
to remotely view who is at the front door and open the door.
While modern homes have many network-capable devices,
applications that coordinate them for cross-device tasks have
yet to appear in any significant numbers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’10, October 20–21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

We posit that the core issue is a failure to deal with hetero-
geneity across homes. Homes differ in terms of their devices
and inter-connectivity as well as preferences for how various
activities should be conducted [14]. Application developers
are thus not only plagued by having to support many dis-
tinct devices, but also build configurability flexible enough
to meet the demands of a majority of users. It should thus
come as no surprise that there are few applications for the
home today, save those provided by device vendors. But
vendor applications often provide access to their own de-
vices with little or no cross-device capabilities. For instance,
electronic locks come with custom software [20] but little
support for extensibility. Such vertical integration by indi-
vidual vendors discourages device composition.

Current approaches for enabling cross-device tasks fall on
the two ends of a spectrum. At one end are the efforts to im-
prove basic device interoperability through standards (e.g.,
DLNA [10], ZWave [23]) and research efforts [11]. How-
ever, device interoperability alone is insufficient. Applica-
tions also need to support user preferences and coordinate
device access. For instance, a security task may want to keep
the windows closed at the same time as an energy conserva-
tion task wants to open them. Interoperability itself does not
provide mechanisms to resolve such conflicts forcing the ap-
plications to provide it themselves. Such coordination needs
significant engineering.

At the other end are monolithic systems that tightly inte-
grate multiple devices for specific cross-device tasks. They
include commercial security systems (e.g., ADT [1]) and re-
search efforts [6]. However, such systems are hard to extend
(especially by users) with new devices or tasks.

We argue for a fundamentally different approach for orga-
nizing home networks: the development of an operating sys-
tem for the home. By masking heterogeneity across homes
through appropriate abstractions, a HomeOS can greatly sim-
plify application development. Further, users can manage
their homes as a connected ensemble, by specifying their
access control preferences globally. They can also easily en-
able new capabilities by installing new applications or de-
vices. To simplify this task, inspired by Apple’s App Store,
we propose a HomeStore that is coupled with HomeOS. It
helps users find applications that are compatible with their
devices and find devices to enable desired tasks that cannot
be supported by their existing devices alone.

1

While many OSes have been developed in the past, a unique
aspect of HomeOS is that its success hinges on not only the
suitability of its programming abstractions but also how well
it lets users manage and secure their home networks. Unless
it has the right primitives at its core, no degree of post-facto
sophistication in user interfaces will be effective [2, 18].

We thus approach the development of HomeOS as an inter-
disciplinary exercise that spans human computer interaction
(HCI) and network systems. Our intent is to learn the men-
tal models of users and then design compatible abstractions.
Towards that goal, we are conducting field visits to homes
with automation systems. While our visits covered many
aspects of home technology, in this paper, we focus on ac-
cess control. We find HomeOS’s access control needs to be
different than those found in traditional OSes. It needs to in-
corporate a notion of time to allow users to restrict access to
certain devices, for instance, at night. It needs to treat appli-
cations as first-order security principals to let an application
be restricted from accessing certain resources, independent
of the user that activates it. HomeOS should also provide
users an easily understood view of security settings.

We capture these requirements by formulating access con-
trol policies as Datalog relationships on applications, de-
vices, users, and time. The use of Datalog and the absence of
complex primitives such as dynamic delegation means that
access verifications are simple (and fast) queries. Datalog
queries also provide users with different desired perspectives
on their policies, e.g., list applications that can ever access
the door lock.

Many additional abstractions in HomeOS borrow liberally
from existing OSes. HomeOS logically centralizes the con-
trol plane of the home network [15, 13] and uses “drivers”
to abstract the low-level details of devices and connectivity.

In place of the multitude of inter-process communication
modes supported by current OSes, we build HomeOS using
a single, simple abstraction. For this, we extend Accent
ports [19]. Our ports enable the exchange of typed messages
and can be queried for their functional description. HomeOS
does not need to understand the semantics of this descrip-
tion. Such a design choice lets new devices and applications
to be easily added in the future.

To evaluate our design, we have set up a testbed with a di-
verse mix of devices and are building applications that com-
pose them in various ways. For instance, one of our applica-
tions composes a smartphone, a camera, a light, and face and
speech recognition; another composes lights and speakers in
multiple rooms and a media server. Preliminary experience
shows that building applications using HomeOS is simple and
that the applications have adequate performance for interac-
tive use. We also plan to conduct usability studies of our
system once its development matures.

2. THE STATE OF THE HOME
While each home is different, the dominant paradigm for

technology in the home can be summed as follows. Users

buy individual devices such as PCs, smartphones, game con-
soles, TVs, and cameras. Each device comes with its own
application software that runs on the device or on a PC or
smartphone. This software rarely leverages the functionality
of other devices in the home.

The current paradigm is highly undesirable for users, ap-
plication developers, as well as device vendors.

2.1 The user perspective
From the perspective of users, today’s home networks have

two significant shortcomings.
Integration hurdles: Despite investing in several sophis-
ticated devices, it is hard for users to fully exploit the func-
tionality that their devices are collectively capable of. Cross-
device compatibility occurs only when two devices happen
to implement the same standard (e.g., DLNA), are part of
a monolithic multi-device system (e.g., cameras and locks
for security), or are from the same vendor (e.g., XBox and
Zune). No single vendor is even close to manufacturing all
the types of devices found in homes today.

This lack of cross-device functionality frustrates users.
For example, in our field visits, one user commented: “A lot
of the products are kind of new and not an integrated ven-
dor. It’s like the Control4 [a home automation system] stuff
is, you know, integrated but [then] you’re locked in to their
stuff. But if you’re not locked into these things it’s kind of
hard to get those things to work together. So it’s kind of a
task to keep it all integrated and working.”
Management nightmare: Each device comes with its
own configuration and access control tools, and users must
get familiar with different interfaces and semantics. With
many devices present, this can be a nightmare [14].

2.2 The developer perspective
Given the potentially huge market, one might expect that

writing applications for the home would be lucrative. How-
ever, there are few independent developers in this domain.
Most software is provided by device vendors to use the func-
tionality of their devices in certain fixed ways.

While writing applications for a specific home might not
be hard, because homes are highly heterogeneous, the chal-
lenge is to write applications that work across a range of
homes. We identify four sources of heterogeneity that drive
up the engineering investment needed to make an application
broadly useful.
Device heterogeneity: Different devices, even of the
same type, support different standards. For example, light
switches may use ZWave, ZigBee, or X10.
Topological heterogeneity: Devices are connected in
different ways. Some homes have a simple topology based
only on WiFi, but some have a mix of WiFi, Ethernet, and
ZWave. Further, some devices may have different connectiv-
ity modes at different times. For instance, smartphone can
use the home WiFi or the 3G network.
Heterogeneity in user preferences: Different homes

2

have different preferences as to how various activities should
occur [14]. For example, some might want the XBox to not
run after 9 PM, and some might want the security camera to
record only at night.
Coordination heterogeneity: If multiple applications are
running, cases where two of them want to access a device at
the same time may arise. Such simultaneous access may be
undesirable in some cases. For instance, the lighting control
application may want to open the window while the security
application may want to close it.

2.3 The vendor perspective
Vendors (especially smaller ones) want their devices to

become broadly adopted especially since users desire device
integration inside their homes. However, heterogeneity hurts
vendors as well. As a result, they tend to vertically integrate
devices and software, to provide a robust experience to users
independent of the environment. Abstracting heterogeneity
in the home will likely reduce vertical integration and enable
device composition as well as reuse across multiple tasks.

3. HomeOS AND HomeStore

To address the problems above, we call for a different
paradigm for home networking. In particular, we propose
the development of a HomeOS and a HomeStore. This section
outlines our vision. Later sections describe the challenges
and our efforts towards realizing this vision.

The goals of HomeOS are to simplify the management of
home networks and the development of applications. It ac-
complishes these goals as follows. First, it provides one
place to configure and secure the home network as one con-
nected ensemble. Users do not have to deal with multiple
different interfaces and semantics.

Second, it provides high-level abstractions to applications.
Developers do not have to worry about low-level details of
devices and about device inter-connectivity. HomeOS is re-
sponsible for enforcing user preferences for device access
and coordination, which does not have to be supported by
individual applications. For example, if a user dislikes noise
at night, she can disable night-time access to all speakers;
HomeOS will then automatically deny access to all applica-
tions that try to use the speakers.

With HomeOS, users enable new tasks by installing new
home applications. Because homes are heterogeneous, this
process must be streamlined such that users do not inadver-
tently install applications that will not work in their homes.
For instance, if an application for keyless entry requires a
fingerprint scanner, users without such devices should be
warned against purchasing such an application.

Inspired by the iPhone model, we propose that HomeOS be
coupled with a HomeStore to simplify the distribution of ap-
plications and devices. The HomeStore verifies compatibility
between homes and applications. Based on users’ desired
tasks, it recommends applications that work in their homes.
If a home does not have devices required for those tasks, it

recommends appropriate devices as well. For instance, if a
user wants integrated temperature and window control, the
HomeStore can recommend window controllers if there ex-
ists an application that combines those window controllers
with the user’s existing thermostat.

In addition, the HomeStore can perform basic quality checks
and support rating and reviewing to help identify poorly en-
gineered applications and devices. We do not intend for the
HomeStore to become the sole gatekeeper for home applica-
tions. Towards this end, we allow for multiple HomeStores,
and users can visit the one they trust most.

4. CHALLENGES
There are many technical challenges in realizing the vi-

sion above. In this paper, we focus on two main ones.
The first is to design appropriate primitives that enable

users to effectively manage and secure their home networks.
Security must be a prime focus because applications are con-
tributed by independent developers. Applications should not
be able to, for instance, inadvertently open the door at night
or make home videos public.

The primary requirement for these primitives is their com-
patibility with users’ mental models. Recent studies show
that the primitives in current OSes are insufficient even for
settings [2, 18] simpler than the ones HomeOS targets. We
are conducting field studies to understand what primitives
are likely to work well in this setting.

The second challenge is to develop abstractions for com-
munication and security against which applications are writ-
ten. These abstractions must be flexible enough to abstract
heterogeneity, yet simple enough to develop against.

A key requirement for HomeOS abstractions is that they
not hinder future innovation. It should be easy to support ap-
plication and device types that do not exist yet. It should also
be easy for applications to exploit new or differentiating fea-
tures of devices; otherwise vendors will have little incentive
to invest in new features or make their devices compatible
with HomeOS. This requirement implies that HomeOS must
make minimal assumptions about the the nature of devices
and applications. More assumptions imply a greater chance
that a future technology will be hard to support. It follows
that HomeOS should not rely on understanding the semantics
(e.g., content formats) of device functionality or of messages
exchanged between devices and applications.

Enabling future innovation and simplifying application de-
velopment can be in conflict. In general, richer abstrac-
tions lead to easier application development but simpler ones
make fewer assumptions. Our design errs towards simpler
abstractions to not hinder future innovation.

5. PRELIMINARY DESIGN OF HomeOS

We now describe our progress towards meeting the chal-
lenges above. In addition to developing our system, we are
conducting a field study of homes to inform our design.

3

5.1 Field study
We are visiting households with home automation (e.g.,

remote lighting control, security cameras and automatic door
locks). While we expect HomeOS to enable tasks not possible
today, these households can give us first hand insight into
how they use the current technology and the challenges they
face. We recruited households with a range of systems such
as Elk M1, Control4, and Leviton.1

Each visit had two main parts: i) questions about their
technology and experience with it; and ii) introduction to
the HomeStore concept and questions about applications and
access control. Each visit took roughly 2 hours. We analyzed
the interviews using affinity diagramming [3].

We have completed visits to six homes (12 people) in
the USA. While we continue additional visits, insights from
these initial visits have already influenced our design. For
example, we observed the unique configurations in each home
and the challenge of integrating devices. Given that four of
our homes had installed their own systems, but still strug-
gled, it seems that integration and management tasks are
challenging even for highly technical users.

Our visits reveal that households want access control prim-
itives that differ from those present in traditional OSes. First,
when speaking with participants about how they manage ac-
cess to devices today, it became apparent that they wanted a
notion of time. Parents mentioned restricting children from
using certain devices after certain times (e.g. “If my daugh-
ter wanted watch [Curious] George at 11 o’clock at night, I
wouldn’t want to do that”). While social interaction may
suffice in some situations, many parents asked for technical
means. A richer notion of time was also desired in order to
allow households to grant a variety of access durations for
guests (e.g. a few hours to babysitters, and a few days to
house guests).

Second, asking about concerns when buying applications
highlighted a desire for the ability to limit applications to
certain devices. One participant said “I don’t want to grant
it [the application] access to everything, just my laptop.” A
participant in a different home commented about another ap-
plication: “if it said my DVR and my TV I would say fine, ...
if it had my phone or my computer I would want to be able
to choose [what it can access].” This observation motivates
our design choice to treat applications as first-order security
principals. In current OSes, users and resources (e.g., files)
are the typical security principals and applications simply
inherit users’ privileges.

Finally, people showed clear differences between their level
of sensitivity for different devices and a strong desire to en-
sure the security of some devices. For instance, a partici-
pant with electronic door locks said he had not hooked up
remote access because he was not 100% certain of its secu-
rity. HomeOS must be able to provide users a reliable, easy-

1While such technology has been around since 1970s, the number
of installations is quite small. Approximately 215K systems were
shipped worldwide in 2008 [17].

App 1 App 2 App N…...

Drvr 1 Drvr 2 Drvr K
…...
Ports

Isolation and

access control

boundary

Figure 1: An overview of HomeOS.

to-understand view of their security settings, with provisions
for being able to focus on the settings for sensitive devices.

5.2 System design
We describe now the design of HomeOS, limiting ourselves

to a high-level overview. While many key pieces of our de-
sign are in place, it is far from complete and we continue
to refine it based on our development experience. Figure 1
shows an illustration of HomeOS. In its first iteration, we en-
vision it as running on an always-on appliance in the home.

HomeOS is a logically centralized system to allow for greater
flexibility in control policies and avoid the fragility of dis-
tributed logic [13]. The data plane is not centralized. When
devices share the same interoperability protocol (e.g., DLNA-
capable network TV and media server), data streams flow
directly between devices.

Logical centralization is enabled by drivers that logically
incorporate the device into HomeOS independent of network
topology. From the perspective of applications all devices
connect to HomeOS. directly, which greatly simplifies appli-
cation development. Conventional control of devices (e.g.,
turning off a light switch) is still permitted; drivers detect
and notify interested applications of such events.

HomeOS can work with existing devices, as long a driver
can communicate with them. Any protocol, whether propri-
etary or standardized, may be implemented between a driver
and its devices. Drivers may be written by device vendors or
independent developers. If a corresponding driver is avail-
able, adding a device to HomeOS should be close to a plug-
and-play model.

As its core features, HomeOS offers: i) driver and applica-
tion modules; ii) a “port” abstraction for exposing function-
ality and communication; and iii) access control for users
and modules. HomeOS has other facilities, such as device
discovery, but those can be easily replaced by different ver-
sions. HomeOS is built on a modern language runtime (the
.NET Framework). All modules are implemented in a type-
safe manner, using a language supported by the runtime.
Modules Driver and application modules are isolated
in HomeOS, so that a poorly written module cannot impact
HomeOS or other modules. To achieve isolation along with
performance that is adequate for interactive use, we use a
lightweight isolation boundary called “application domains”
provided by our runtime. Direct interaction is not allowed
across domains, and only typed objects can be communi-

4

cated through pre-defined entry points.
Ports Modern OSes have a variety of communication ab-
stractions such as pipes, signals, sockets, shared memory,
and more. Instead, we want a single, simple abstraction that
meets our needs (§4). While the simplest possible abstrac-
tion is the Unix pipe, it is too simple; for instance, it only
allows file-like data to be exchanged. Perhaps the next sim-
plest one is the Accent port [19], which allows typed mes-
sages to be exchanged.

We thus decided to use ports but HomeOS ports differ from
Accent in one key way: they can be queried for their func-
tional description and location (e.g., living room). A module
that wants to expose certain functionality registers port(s)
with HomeOS. Modules can query registered ports and decide
which ones to use. Unless access is restricted (see below),
modules can make use of a port’s functionality by sending
and receiving messages.

A port is functionally described in terms of roles and con-
trols. Roles are text strings that express a general function-
ality, and controls are typed points of sensing and actuation
within a port. For instance, a dimmer in our testbed is de-
scribed as <roles=“lightswitch”, “dimmerswitch”>, <controls=(“on-
off”, binary, readable, writable), (“intensity”, range:1-100, readable, writable)>.
This port functions as a light and a dimmer switch, and it has
two controls of types binary and range. Modules read from,
write to and subscribe to changes from controls by sending
corresponding messages to the relevant port.

HomeOS does not need to understand the semantics of a
port’s functionality; only modules that want to use it need
this ability. For example, only camera-based applications
need to understand the functional description of cameras.
New devices or device features can be supported by adding
roles or controls to the functional description, without mod-
ifications to HomeOS.
Access control Our field study showed that access control
in the home should have a notion of time and deem appli-
cations as independent security principals. We also wanted
primitives whose semantics can be easily explained to users.
This is difficult in the presence of complicated primitives
(e.g., dynamic delegation) in modern OSes [8].

Based on these requirements, HomeOS access control poli-
cies are Datalog rules of the form (p, g, m, Tws, Twe, pri, a,
Ts, Te), which states that port p can be accessed by users in
group g, using module m, in time window from Tws to Twe,
with priority pri and access mode a. Time window is mod-
ulo a week, to let users specify recurring policies by which
something is allowed, for instance, on Sundays 7-9 PM. Ts

and Te are absolute times when the rule should be activated
and deactivated. They are used to grant temporary access,
e.g., to guests. Groups such as “kids,” and “parents” are
defined separately. Priorities are used to resolve conflicting
access to the same port. Access mode is one of “grant,” “ask
user,” and “grant but notify admin” [2, 18].

Any access not explicit in the rule database is not allowed.
When installing a module, users specify what it can access,

when, and how (which can be changed later). To simplify
this process, modules suggest what they need. In the event
that there is a potential for conflict between the newly-installed
and existing modules when accessing a port, the user is asked
to rank the modules based on their desired access priority.
We infer a partial ordering of all modules based on this rank-
ing and use it to fill in values for pri in the access rules.

Runtime access is implemented using capabilities [16].
Modules obtain the capability to access a port via HomeOS
which performs the access check and installs the capabil-
ity on the target port. Capabilities have an expiration time
based on the rules. If rules change, capabilities are revoked
by uninstalling them from the target port.

We find great value in expressing access control as Dat-
alog rules. Evaluating access legality is a Datalog query,
which is fast despite there being many dimensions in each
rule. Further, by keeping these policies straightforward and
direct, we can provide users a reliable view of their security
settings. They can ask questions such as “which modules
can access the door?”, “which devices can be accessed af-
ter 10 PM?”, or “can a user ever access a device?” Such
questions can be answered through a user interface that con-
structs Datalog queries based on users’ input.

Access control also forms the basis for privacy in HomeOS.
Modules cannot access sensory data from inaccessible de-
vices. Additionally, the wide-area network is treated as an-
other port; so, unless explicitly allowed, modules cannot re-
lay information from the home to the outside world. (Soft-
ware upgrades occur through HomeOS, without modules need-
ing network access.) Thus, our current design coarsely con-
trols privacy at the granularity of modules. In the future, we
will consider finer-grained control by labeling data [21, 22].

6. CURRENT STATUS
We have implemented the design above and are currently

evaluating the ease of developing applications using our ab-
stractions and the performance of our system. We also plan
to evaluate the usability of HomeOS after developing a more
complete version with appropriate user interfaces.

To evaluate HomeOS, we have set up a testbed with a vari-
ety of devices found in today’s homes and are implementing
a range of applications and drivers. Thus far, we have im-
plemented drivers for DLNA (a media standard), ZWave (a
home automation standard), a video camera, and a Windows
Mobile smartphone.

We have written three applications that use multiple de-
vices: i) a “sticky media” application that plays music in
the parts of the house where lights are on and stops else-
where; ii) a “two-factor authentication” application that uses
audio from the smartphone and an image from the front-door
camera to turn on lights when the two inputs match a user;
and iii) a “home browser” to view and control through user
interfaces all devices in the home. Because ports are self-
describing, the browser enables control without understand-
ing device semantics. Due to space constraints, we omit the

5

details of these applications.
Briefly, we find that application development in HomeOS

is relatively straightforward. Even though each application
uses at least four devices, implementation took less than 3
hours and 300 lines of code each. Most of the effort went to-
wards implementing application-specific logic for compos-
ing devices. Further, logically dividing functionality between
drivers and applications created a natural division with eas-
ily reused code in the driver and more specific code in the
application (as in current OSes, but not in homes).

Initial experiments show that HomeOS has adequate per-
formance. On a 3 GHz dual core machine, the request-
response latency across modules, which includes crossing
the isolation boundary twice, is 4 ms. This latency is much
lower than the 100 ms guideline for interactive use, which
leaves enough time even if messages need to be relayed to
devices by their drivers [12].

7. RELATED WORK
Our work builds on previous systems to enable rich ap-

plications in the home. We divide them into two categories.
The first category is that of systems and standards that focus
on interoperability [10, 23, 4, 11]. While interoperability
helps with device heterogeneity, it is insufficient by itself. It
does not help with heterogeneity in topology and user prefer-
ences or with coordinating device access across applications.

The second category is monolithic systems [6]. These sys-
tems are not easy to extend with new devices or applications
because they do not separate the applications and the pro-
gramming platform. They are also not useful for homes that
do not have the minimum set of devices needed to enable
their programmed applications.

Modern home automation systems (e.g., Control4 [9]) al-
low some extensibility but are close to being monolithic.
They work only with devices that implement a particular
standard (e.g., ZigBee for Control4). Further, they allow
only a limited form of programming, based on rules such
as upon event E, do task T; all expected events (e.g., a button
press) must be declared in advance. This framework cannot
express many desired tasks.

Calvert et al. [7] detail management challenges for the
home network. Like us, they then argue for centralization.
In contrast to their proposal, we focus on simplifying appli-
cation development as well, do not centralize the data plane,
and do not require device modifications. We also develop ac-
cess control primitives and communication abstractions suit-
able for the home environment.

With a motivation similar to ours, researchers have pro-
posed OSes over multiple devices in other domains. One
such domain is ubiquitous computing environments or col-
laborative workspaces [5], where the goal is to simplify ap-
plication development over devices such as displays and white-
boards. Another is enterprise networks, where the goal is to
simplify the management of switches [15]. We aim to han-
dle the complexities specific to the home environment. For

instance, unlike collaborative workspaces, homes need to re-
strict individual users and applications; and unlike enterprise
networks, homes have a richer set of devices.

8. CONCLUSIONS
We believe that the combination of HomeOS and Home-

Store can create a new wave of innovation in the home. It
provides a platform for developers to easily write novel ap-
plications and for users to easily add new devices and appli-
cations. We approached the design of HomeOS as an inter-
disciplinary exercise using field visits to learn first hand the
requirements of users. The visits revealed notable differ-
ences from current OSes in how users would like to secure
their home networks. Our design reflects their requirements
and is driven by simplicity and room for future innovation.
Early experience with developing applications that compose
many devices validates our design choices.

9. REFERENCES
[1] Home security systems, home security products, home alarm systems - ADT.

http://www.adt.com/.
[2] L. Bauer, L. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea. A user study of

policy creation in a flexible access-control system. In CHI, 2008.
[3] H. Beyer and K. Holtzblatt. Contextual Design: Defining Customer-Centered

Systems. Morgan Kaufmann, 1998.
[4] Open source - Apple developer.

http://developer.apple.com/opensource/.
[5] J. Borchers, M. Ringel, J. Tyler, and A. Fox. Stanford interactive workspaces: A

framework for physical and graphical user interface prototyping. IEEE Wireless
Communications. Special Issue on Smart Homes, 2002.

[6] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. A. Shafer. EasyLiving:
Technologies for intelligent environments. In Handheld and Ubiquitous
Computing, 2000.

[7] K. L. Calvert, W. K. Edwards, and R. E. Grinter. Moving toward the middle:
The case against the end-to-end argument in home networking. In HotNets,
2007.

[8] A. Chaudhuri, P. Naldurg, G. Ramalingam, S. Rajamani, and L. Velaga. EON:
Modeling and analyzing access control systems with logic programs. In CCS,
2008.

[9] Control4 home automation and control. http://www.control4.com.
[10] DLNA. http://www.dlna.org/home.
[11] W. K. Edwards, M. W. Newman, J. Z. Sedivy, T. F. Smith, D. Balfanz, D. K.

Smetters, H. C. Wong, and S. Izadi. Using SpeakEasy for ad hoc peer-to-peer
collaboration. In CSCW, 2002.

[12] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using latency to evaluate
interactive system performance. In OSDI, 1996.

[13] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach to network control
and management. SIGCOMM CCR, 35(5), 2005.

[14] R. E. Grinter, W. K. Edwards, M. Chetty, E. S. Poole, J.-Y. Sung, J. Yang,
A. Crabtree, P. Tolmie, T. Rodden, C. Greenhalgh, and S. Benford. The ins and
outs of home networking: The case for useful and usable domestic networking.
ToCHI, 16(2), 2009.

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: towards an operating system for networks. SIGCOMM CCR,
38(3), 2008.

[16] H. M. Levy. Capability Based Computer Systems. Digital Press, 1984.
[17] S. Lucero and S. Schatt. Home automation and security. ABI Research, 2009.
[18] M. L. Mazurek, J. Arsenault, J. Breese, N. Gupta, I. Ion, C. Johns, D. Lee,

Y. Liang, J. Olsen, B. Salmon, R. Shay, K. Vaniea, L. Bauer, L. F. Cranor, G. R.
Ganger, and M. K. Reiter. Access control for home data sharing: Attitudes,
needs and practices. In CHI, 2010.

[19] R. F. Rashid and G. G. Robertson. Accent: A communication oriented network
operating system kernel. In SOSP, 1981.

[20] Schlage LiNK. http://link.schlage.com/.
[21] S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey, D. Ziegler,

F. Kaashoek, R. Morris, and D. Mazieres. Labels and event processes in the
asbestos operating system. TOCS, 25(4), 2007.

[22] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Securing distributed systems
with information flow control. In NSDI, 2008.

[23] Z-Wave.com - ZwaveStart. http://www.z-wave.com.

6

