
Practical DCB for Improved Data Center Networks
Brent Stephens, Alan L. Cox

Rice University
Ankit Singla

UIUC
John Carter, Colin Dixon, Wesley Felter

IBM Research, Austin

Abstract—Storage area networking is driving commodity data
center switches to support lossless Ethernet (DCB). Unfortu-
nately, to enable DCB for all traffic on arbitrary network
topologies, we must address several problems that can arise in
lossless networks, e.g., large buffering delays, unfairness, head of
line blocking, and deadlock. We propose TCP-Bolt, a TCP variant
that not only addresses the first three problems but reduces flow
completion times by as much as 70%. We also introduce a simple,
practical deadlock-free routing scheme that eliminates deadlock
while achieving aggregate network throughput within 15% of
ECMP routing. This small compromise in potential routing
capacity is well worth the gains in flow completion time. We note
that our results on deadlock-free routing are also of independent
interest to the storage area networking community. Further, as
our hardware testbed illustrates, these gains are achievable today,
without hardware changes to switches or NICs.

I. INTRODUCTION

New developments in commodity Ethernet hardware, driven
by Fibre Channel over Ethernet (FCoE), have led to wide sup-
port in data center Ethernet switches and NICs for an enhanced
Ethernet standard called Data Center Bridging (DCB)1 [1].
This new standard, in part, augments standard Ethernet with
a per-hop flow control protocol that uses “backpressure” to
ensure that packets are never dropped due to buffer overflow.

Currently DCB is typically only used, for good reasons, to
connect servers to the SAN network via the data network, and
even then just for the first-hop from the server to the top-
of-rack (ToR) switch, which connects to the SAN. Enabling
DCB more broadly, e.g., for data traffic or multi-hop storage
traffic, could provide significant benefits, but doing so on
arbitrary network topologies introduces many problems, e.g.,
deadlock, large buffering delays, unfairness, and head of line
(HoL) blocking. In this paper we present two solutions to these
problems that, when combined, not only enable the use of
DCB for all traffic on networks with arbitrary topologies, but
also achieve shorter flow completion times than achieved by
previous work [2]–[4].

A key goal of a data center network is to provide high
throughput for large background tasks and low latency and
burst tolerance for user applications and management tasks [3].
With DCB, it is possible further this goal. If packets are
never dropped, than TCP slow start can be eliminated, which
allows flows to immediately transmit at a multigigabit line
rate. DCB also improves flow completion time by preventing

1These enhancements are also referred to as Converged Enhanced Ethernet
(CEE) and Data Center Ethernet (DCE), but we will refer to them as DCB.

incast [5], TCP congestion collapse that occurs in short, barrier
synchronized, latency sensitive workloads.

Additionally, the DCB standard is driven by the demand
for converged Storage Area Network (SAN) and LAN fabrics,
which have significant cost, performance, and management ad-
vantages over maintaining separate SANs and LANs [6]. Thus
it is desirable to build a network for all traffic with completely
converged storage and data networks, not just a bridge between
the LAN and SAN, to reduce cost, simplify management, and
exploit the new traffic priority classes included with DCB.

Unfortunately, a naive implementation of a network where
all traffic exploits DCB and TCP slow start is disabled has
significant undesirable consequences. As we demonstrate on
real hardware, DCB can lead to increased latency, unfairness
in flow rates, head-of-line blocking, and even deadlock, which
quickly renders the network unusable until it is reset. However,
as we shall show in this paper, none of these are irresolvable
problems, and they can be addressed using simple mechanisms
already supported on commodity hardware. Additionally, our
solutions to these problems do not compromise the improve-
ments we achieved for flow completion times.

To address DCB’s problems, we present TCP-Bolt, a TCP
variant that is designed to achieve shorter flow completion
times in data centers while avoiding head-of-line blocking and
maintaining near TCP fairness, and a novel routing algorithm
that uses edge-disjoint spanning trees (EDSTs) to prevent
deadlock. TCP-Bolt avoids the negative properties of DCB
by using DCTCP [3] to maintain low queue occupancy while
relying on DCB to prevent throughput collapse due to incasts,
which occur on a timescale shorter than an RTT. TCP-Bolt is
able to aggressively and optimistically stress the network by
eliminating slow start, which results in faster flow completions.
By using edge-disjoint spanning trees (EDSTs), our routing
algorithm guarantees that there are no cyclic dependencies
between routes, and thus no deadlocks. Our EDST rout-
ing mechanism forwards over many different EDSTs, so it
performs multipath forwarding with a minimal performance
impact. Also, since each spanning tree is edge disjoint, all
paths used in the network are guaranteed to be isolated.

As motivation for our work, we illustrate the gains achiev-
able on actual DCB-enabled hardware by comparing the
performance of a single flow over a simple two-hop network
using TCP with an initial congestion window as large as the
network’s bandwidth-delay product2 running over DCB (TCP-

2Using an initial congestion window equal to or larger than the bandwidth-
delay product effectively disables slow start and is the mechanism we use for
that feature in TCP-Bolt.978-1-4799-3360-0/14/$31.00 c© 2014 IEEE

2

 1

 1.5

 2

 2.5

 3

 3.5

103 104 105 106 107 108 109 1010
 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

Sp
ee

du
p

Fa
ct

or

PD
F

of
 F

lo
w

 S
iz

e

Flow Size (Bytes)

Fig. 1: TCP with a large initial congestion window running over
DCB achieves significant speedup with standard TCP over Ethernet.

DCB) against default TCP over normal Ethernet (TCP-Eth).
Figure 1 plots a speedup factor of how much faster flows of
different sizes finish with TCP-DCB compared to TCP-Eth.
The speedup factor is superimposed over a probability density
function of background flow sizes from a production data
center with 6000 servers [3]. For flow sizes between 100KB
and 10MB, which represent a significant fraction of the flows,
this experiment shows that TCP-DCB can achieve speedups of
1.5–3x. This is important because flows in this range have been
characterized as being time-sensitive short message flows [3].

While there is a significant body of work [3], [4], [7]–
[10] on reducing flow completion times in the data center,
none of these past proposals can achieve gains similar to
ours on commodity hardware. We also note that our proposed
modifications to TCP for use over DCB cover most of the
functionality that the IEEE 802.1Qau working group [11] is
attempting to achieve through hardware modifications beyond
DCB. This is significant because in the absence of this func-
tionality, deploying DCB over non-trivial multi-hop topologies
runs the risk of congestion spreading [12], which is closely
related to the head-of-line blocking problem we solve.

Our key contributions are:
• Demonstrating on real hardware both the problems that

exist with DCB and solutions that avoid these pitfalls.
• Showing that using DCB to eliminate TCP slow start

reduces average completion times for flow sizes between
10KB and 1MB by 50 to 70%; 99.9th percentile flow-
completion times are reduced by as much as 90%.
Additionally, we show that TCP-Bolt outperforms prior
work [2] that also eliminates TCP slow start.

• We introduce a simple and efficient deadlock-free EDST
routing scheme for commodity Ethernet that makes DCB
feasible over irregular topologies. This also makes past
work on lossless ethernet more generally applicable.

The remainder of this paper is organized as follows. Sec-
tion II provides background on lossless Ethernet, including
how it works and its implications. We describe the design
of TCP-Bolt and the EDST routing algorithm in Section III.
In Section IV we describe our experimental methodology, fol-
lowed by our performance evaluation in Section V. Section VI

briefly discusses related work. Finally, we conclude and sug-
gest avenues for possible future research in Section VII.

II. DATA CENTER BRIDGING 101

DCB is designed to avoid losses caused by buffer overruns.
To prevent buffer overrun, a DCB NIC or switch port antici-
pates when it will not be able to accommodate more data in
its buffer3 and sends a pause frame to its directly connected
upstream device asking it to wait for a specified amount of
time before any further data transmission. Once this pause
request expires, either buffer space will be available or the
NIC/switch port will renew the request by sending another
pause frame. Expiration is typically on the timescale of a few
packets worth of transmission time.

In effect, pause frames exert backpressure because a per-
sistently paused link will cascade pauses back into the net-
work until, ultimately, traffic sources themselves receive pause
frames and stop sending traffic.

A. Implications of Backpressure

DCB’s backpressure paradigm has some non-obvious im-
plications that can degrade throughput and latency when used
with TCP. We detail these problems here, and discuss our
solutions in Section III.

1. Increased queuing (bufferbloat): In the experiments on
our physical testbed, we observed that when TCP is run over
DCB, round trip times increase from 240µs to 1240µs, more
than a 5x increase. This occurs because by eliminating packet
losses, DCB effectively disables TCP congestion control. If
TCP sees no congestion notifications (i.e., losses), its conges-
tion window grows without bound. When congestion occurs,
buffers become fully utilized throughout the network before
pause frames can propagate, which adds substantial queueing
delays, both in the switches and end hosts.

2. Deadlocks in routing: Routing deadlocks arise from
packets waiting indefinitely on buffer resources. If a cyclic
dependency occurs across a set of buffers, with each buffer
waiting on another buffer to have capacity before it can
transmit a packet, deadlock results. If routes are not carefully
picked, lossless networks such as DCB or InfiniBand can suf-
fer from this problem. Traditional Ethernet avoids deadlocks
by dropping packets when buffer space is not available.

A simple example of a deadlock resulting from a cycle of
such wait dependencies is shown in Figure 2. The left half
of the figure has 3 flows running over 3 switches A, B, and
C. The example shows input-port buffers, but using output
queues is equivalent. Flow fABC starts at a host (not shown)
attached to A, passes through B, and ends at a host attached
to C. Likewise, there are two other flows, fBCA and fCAB .
Note that individual routes are loop-free. However, as shown
on the right, if the packet at the head of the A’s input queue is

3A DCB-enabled NIC or switch port must conservatively estimate how
much data the upstream device could send before receiving and processing
a pause frame, and issue pause frames while it has enough buffer space to
accommodate this data.

3

B C

A

B C

A

Fig. 2: A cycle of buffer dependencies that could cause a routing
deadlock. Note that each individual route is loop-free.

A

B H1

H2

H3

H4

½

¹⁄₈

¹⁄₈ ¹⁄₈

¹⁄₈

Fig. 3: Because DCB enforces per-port fairness, the B → A flow
gets half the bandwidth while the other flows share the remainder.

destined for the host at B, the packet at B’s input is destined
for the host at C, and the one at C’s input is destined for the
host at A, a cyclic dependency develops between the buffers
at A, B, and C: fABC waits for fBCA, which waits for fCAB ,
which waits for fABC . While this simple example may seem
easy to avoid, deadlocks can arise from complex interactions
involving many flows and switches.

3. Throughput unfairness: Under stable operation, TCP
achieves max-min fairness between flows sharing a bottleneck
link. This occurs because every host receives and reacts ap-
propriately to congestion notifications, typically packet losses.

In contrast, DCB propagates pause frames hop-by-hop,
without any knowledge of the flows that are causing the
congestion. Switches do not have per-flow information, so
they perform round robin scheduling between competing ports,
which can lead to significant unfairness at the flow level. Fig-
ure 3 illustrates one such situation. Without DCB, TCP would
impose per-flow fairness at the congested link (incoming at
A), resulting in each flow receiving 1

5 of the link. However,
when DCB is employed naively, fairness is enforced at a port
granularity at the left (congested) switch. The B → A flow
gets 1

2 of the congested link while the other four flows share
the remainder because of DCB’s per-input-port fairness policy.

Figure 4 and Figure 5 present what happens when we imple-
mented the scenario shown in Figure 3 on our hardware testbed
using TCP over Ethernet and TCP over DCB, respectively.
Hosts H{1, 2, 3, 4} are attached to one switch, while hosts
A and B are connected to another switch. There is a single
link between the two switches. There are five flows: B → A,
and H{1, 2, 3, 4} → A. Two flows, B → A and H1 → A,
last the entire experiment. H2 → A lasts from t = 2–12,
H3 → A lasts from t = 4–10, and H4 → A lasts from
t = 6–8. Figure 4 presents the results for TCP over Ethernet;

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t

(G
bp

s)

Time (s)

B to A
H1 to A
H2 to A
H3 to A
H4 to A

Fig. 4: The throughput of competing normal TCP flows in the
topology shown in Figure 3. TCP roughly approximates per-flow fair
sharing of the congested link.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t

(G
bp

s)
Time (s)

B to A
H1 to A
H2 to A
H3 to A
H4 to A

Fig. 5: The throughput of competing normal TCP flows in the
topology shown in Figure 3 with DCB enable on the switches.
Because DCB provides per-port fair sharing, the A to B flow gets half
the bandwidth while the other flows share the remaining bandwidth.

each flow’s bandwidth converges to roughly its fair share soon
after any flow joins or leaves, but there is substantial noise and
jitter. Figure 5 presents the results for TCP over DCB; almost
all jitter is eliminated, but bandwidth is shared per-port rather
than per-flow. The B → A flow gets half of the shared link’s
capacity, while the flows that share the same input port on the
second switch share the remaining capacity uniformly.

4. Head-of-line blocking: DCB issues pause frames on a per-
link (or per virtual-lane) granularity. If two flows share a link,
they will both be paused even if the downstream path of only
one of them is issuing pauses. This scenario is illustrated in
Figure 6, where the A→ D flow suffers head-of-line blocking
due to sharing the virtual lane with A → C, even though its
own downstream path is uncongested. Further, as these pause
frames are propagated upstream to both flows, periodicities in
the system may cause one flow to repeatedly be issued pauses
even as the other occupies the buffer each time a few packets
are transmitted. This latter anomaly is similar to the ‘TCP
Outcast’ problem [13].

Figure 7 presents the results on our testbed when we ran
a set of workloads that induced head of line blocking on a
similar configuration (the results for H3→ C are elided). In
this scenario, the flow from A→ C exists from time t = 0−10
and then completes. During the initial ten seconds, the flow
from A → D is unable to achieve full (10 Gbps) bandwidth
because of the head of line blocking induced by the A → C
flow’s congestion. During this period, all flows achieve only

4

Pause frames

Congestion
HoL Blocking

A

C

H1 H2 H3

D

Fig. 6: The A → D flow suffers head-of-line blocking due to sharing
bottlenecked link with A → C.

0
1
2
3
4
5
6
7
8
9

10

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

(G
bp

s)

Time (s)

TCP would be here

A to C
A to D

H1 to C
H2 to C

Fig. 7: Throughput of normal TCP flows over the topology seen in
Figure 6 with DCB-enabled switches. The A → D flow is unable
to use the full bandwidth available to it because it is being blocked
along with the A → C flow.

2.5Gb/sec. When the A → C flow stops at time t = 10,
flow A→ D ramps up to its full 10 Gbps potential, while the
remaining flows evenly share the 10 Gbps link to C.

III. PRACTICAL DCB

As described above, DCB can have negative consequences
for throughput and latency. In this section, we show that these
problems are not irresolvable, and provide solutions to each
of the four problems that we discussed.

A. TCP-Bolt

One mechanism solves three of our four problems: increased
queuing, throughput unfairness, and head-of-line blocking.
The solution is to use ECN [14] in conjunction with DCB.
Packets are marked with ECN bits by each switch at a con-
figurable ECN threshold, allowing TCP to function normally
even as DCB prevents losses. However, using only ECN
results in low throughput, because TCP halves its window
upon receipt of a single ECN marked packet. Thus we base
TCP-Bolt on DCTCP [3], a recently proposed TCP variant
that responds proportionally to the fraction of ECN marked
packets. This makes DCTCP’s response to congestion more
stable and less conservative. DCTCP also reduced buffer
occupancy compared to normal TCP, which further improves
the completion time of short flows.

Although DCTCP has low flow completion times for short
(2–8KB) flows, we have observed that using DCTCP can
increase the tail end of the flow completion times of medium
(64KB–16MB) flows, a range of flow sizes that still includes

A

F

E

C

D B

Fig. 8: Three example edge-disjoint spanning trees (EDSTs) in a
small network. The EDSTs are in color, the links are in gray.

latency-sensitive flows [3]. This problem could be addressed
by using DCTCP with bandwidth-delay product sized conges-
tion windows, but doing so is unsafe and can increase the
tail of flow completion times because congestion collapse is
still possible. However, by using DCB and a bandwidth-delay
product sized congestion window DCTCP in TCP-Bolt, we
reduce flow completion times for short and medium flows by
eliminating slow start while preventing congestion collapse
because DCB eliminates packet loss.

B. DFR for commodity Ethernet

Routing deadlocks are a well known problem in high-
performance computing, so a variety of deadlock-free routing
algorithms of varying complexity, efficiency, and generality
have been developed [15]. However, these routing schemes are
targeted at networks where nodes typically have small rout-
ing tables due to memory constraints, whereas our switches
allow over 100,000 routing entries [16]. In addition Ethernet,
supports VLANs, which allow routes on the same path to be
distinguished. We exploit these features to build a simple and
easy to deploy deadlock-free routing (DFR) algorithm.

We exploit two simple facts in our deadlock-free routing
algorithm: (i) shortest-path routing is deadlock-free on trees
and (ii) edge-disjoint trees are guaranteed to be isolated from
one another. Each route in a tree only goes up or down, never
using the same link twice. Further, cyclic dependencies across
routes are impossible because the topology has no loops.
Breaking up a given network’s physical topology into a forest
of edge-disjoint spanning trees (EDSTs) and using these trees
exclusively for routing creates isolated routing sub-graphs on
which traffic does not interact because buffer-space is allocated
per-edge.

Clearly, the number of such trees that one can find is limited
for each topology. We define T as the number of such trees
for a given topology. Having a larger number of such trees is
desirable, as it provides a greater diversity of routes. Thus, we
use virtual lanes to increase the number of EDSTs possible.
The DCB standard (802.1Qbb Priority Flow Control [17])
creates eight separate virtual lanes per physical link and allows
these virtual links to be paused and restarted independently,
which makes them deadlock-independent of one another. Thus,
we can create as many as 8T EDSTs. Note that we need not
simply replicate a single set of T trees eight times—that would

5

not yield greater path diversity. Instead, we prefer to find eight
distinct sets of roughly T trees.

Figure 8 illustrates using two different sets of EDSTs in a
small network. There are three trees shown in dashed blue,
dotted red, and solid green lines. The dashed blue and dotted
red line trees are edge-disjoint without the need for virtual
lanes. However, with the addition of a second virtual lane, we
can add the solid green line tree that is not disjoint from the
other trees, which increases path diversity.

After obtaining our EDSTs, the DFR algorithm assigns
a VLAN identifier to each tree. It then computes shortest
path routes on each tree (VLAN) to obtain a next hop entry
at each node for each destination (MAC). During routing,
either the ingress-switch or the host (if routing information
is exposed to hosts) decides which tree is used to reach a
particular destination. This choice can be statically encoded in
the switch’s routing table, or, for multipath routing, can be a
per-flow randomized choice from a set of desirable trees . The
tree is identified by a VLAN identifier in the packet header,
and the virtual layer corresponding to the tree is identified in
the QoS bits per the DCB standards.

For an example, consider an unstructured Jellyfish net-
work [18], which is a random r-regular graph (RRG) at the
switch layer4. In theory one can, with high probability, obtain
b r2c EDSTs on a Jellyfish topology [19]. We used a heuristic
randomized spanning tree selection process that consistently
found roughly this number of EDSTs. With 8 virtual layers,
∼8b r2c EDSTs are available. By running the randomized
heuristic eight times, we typically obtain eight significantly
different sets of trees. Consider a Jellyfish network built using
64-port switches, assuming 32 ports are used for the network
(i.e., r = 32) and the other 32 attach hosts. For such a system,
we can obtain 128 distinct EDSTs. Even if all 128 EDSTs
were used for routing to all destinations, the routing state for
a 1000-switch Jellyfish network (i.e., 32,000 end hosts) would
fit in our layer-2 forwarding tables [20].

IV. EXPERIMENTAL METHODOLOGY

A. TCP-Bolt

1) Physical Testbed: Our testbed consists of 4 IBM
G8264 [20] 48-port, DCB-enabled, 10 Gbps switches, and 20
hosts. For the presented experiments, we have them arranged
in a line. The RTT of the network is approximately 240µs,
with most latency coming from the host’s network stacks
resulting in near-constant RTTs regardless of path hop counts.
Each switch has nine megabytes of buffer space for packets,
which is shared between all ports on the switch. Each host
in the testbed runs Ubuntu 12.04 Linux with the 3.2 kernel.
Except when noted, we use the default Linux TCP imple-
mentation, TCP Cubic, with an initial congestion window size
of 10 MSS. Our DCTCP implementation is based on TCP
NewReno and is forward ported to the 3.2 kernel from the
implementation made available by the DCTCP authors [3]. For
TCP bolt, we modified TCP to disable slow start by setting the

4On folded Clos-networks, such as fat-trees, finding EDSTs is trivial.

initial congestion window to allow for line-rate transmission
for our network.

2) ns-3 TCP Simulations: To consider the effects of larger
networks and more complicated congestion dynamics, we also
performed simulations in ns-3 [21]. This simulation code is
available upon request.

In our simulations, all of the TCP variants are based on TCP
NewReno, the default TCP initial congestion window is set
to 10 segments, and the bandwidth-delay product congestion
window is set to 200 segments. To increase the performance
of the baseline TCP, we set the minimum retransmit timeout
to the low value of 2ms, as suggested by Vasudevan et al. [22]

We also compare TCP-Bolt against pFabric [2], a recently
proposed congestion scheme that uses line-rate initial con-
gestion windows, small priority queues, and a short fixed
retransmit timeout. We set the initial pFabric congestion
window to 200 and the minimum retransmit timeout to 600µs,
roughly three times the minimum RTT, as recommended by
the authors.

We simulated a full bisection bandwidth 3-tier fat-tree
topology with 54 hosts. All links in the network operate at
10 Gbps, and the network delays are set so that the RTT is
240µs. Each port in the network has 225 KB of buffer space
unless pFabric is enabled, in which case we use 22.5 KB
of buffer per port, similar to the author’s suggestions for
implementing pFabric. When DCTCP is used, the marking
threshold is set to 22.5 KB. These parameters were chosen to
emulate our physical testbed.

We use two different load balancing schemes in the sim-
ulations. The first is ECMP. The second is packet spraying,
suggested by DeTail [4], which routes each packet along a
random minimal path. When packet spraying is enabled, we
disable TCP Fast Retransmit so that packet reordering does
not have an adverse impact on TCP behavior.

3) Workload: To evaluate TCP-Bolt, we use a workload
based on the characterization of a production data center [3]
that is similar to the workloads used in previous work [4],
[7], [23]. Short partition-aggregate jobs, or incasts, arrive
according to a Poisson process at each host. For each incast
job, the origin host, or aggregator, requests a server request
unit (SRU) from 10 other randomly chosen hosts. The SRU
is randomly chosen from 2 KB, 4 KB, and 8 KB with equal
probability. The average arrival rate is set to 200 incasts per
second per host—about 1% of the total network throughput.

In addition to incast flows, each host also averages sending
one background flow to another randomly chosen host. These
background flows are sized randomly from 64 KB to 32 MB
and represent non-query, non-aggregate traffic in the network,
which includes both short message and background traffic in
a real data center [3].

B. EDST Simulations

For the EDST analysis, we make a number of assumptions.
We assume the use of 64-port layer-2 commodity switches
that support DCB and have tens or hundreds of thousands of
L2 forwarding entries that map (Destination MAC, VLAN)

6

0
1
2
3
4
5
6
7
8
9

10

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t

(G
bp

s)

Time (s)

B to A
H1 to A
H2 to A
H3 to A
H4 to A

Fig. 9: The throughput of competing TCP-Bolt flows with DCB
enabled on the network switches using the topology shown in Fig. 3.
DCTCP dynamics keep buffer occupancy low so that per-flow (instead
of per-port) fair sharing emerges.

tuples to output ports, e.g., IBM’s G8264 [20]. We assume
that forwarding tables route on MAC addresses, are computed
offline, and are statically populated at switches. We assume
that there are 8 virtual lanes per output port. For scalability
beyond a few thousand hosts, we assume route aggregation
at the ingress switches, which can be achieved without com-
promising layer-2 semantics [24], [25] and can reduce routing
state by 20–1000x depending on the number of hosts attached
to a switch and the number of virtual machines per host.

To perform our EDST analysis, we wrote a custom simulator
that models flows, omitting the TCP dynamics modeled in the
ns-3 simulator. Instead, we assume that each flow immediately
receives its max-min fair share bandwidth of the bottleneck
link on its path. The simulated workload is a random per-
mutation, with each host acting once as a sender and once
as a receiver, transmitting at maximum rate. All results were
averaged over 20 runs on the same Jellyfish network.

V. EVALUATION

In this section, we evaluate TCP-Bolt and our EDST routing
algorithm. First, we show that TCP-Bolt mitigates the potential
fairness and head-of-line blocking pitfalls of DCB that were
described in Section II. Second, we demonstrate that TCP-Bolt
improves flow completion times at scale across the full range
of flow sizes using experiments performed on our testbed and
ns-3 simulations. Finally, we show that using our novel EDST
routing algorithm for DFR only minimally affects performance
compared to deadlock-oblivious routing approaches.

A. Solving DCB’s Pitfalls

Although DCB’s per-hop flow control can cause per-port
fairness and head-of-line blocking, TCP-Bolt’s use of DCTCP
ensures that in the common case switch buffers are not full and
thus pause frames are uncommon. This in effect allows us to
use pause frames for safety, while using DCTCP’s mechanisms
to adapt to the correct long-term transmission rate.

1) Fairness: Fig. 9 shows the throughput achieved using
TCP-Bolt for flows B → A and H{1, 2, 3, 4} → A on the
same configuration (Fig. 3) used for the fairness experiments
described in Section II-A. The flows clearly come much closer
to fairly sharing available bandwidth than normal TCP either

0
1
2
3
4
5
6
7
8
9

10

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t

(G
bp

s)

Time (s)

TCP would be here

A to C
A to D

H1 to C
H2 to C

Fig. 10: The throughput of TCP-Bolt flows using the topology show
in Fig. 6. DCTCP dynamics prevent any head-of-line blocking, but
also cause slight unfairness.

with (Figure 5) or without (Figure 4) DCB. While there is
small variance in throughput, the average per-flow throughput
is very close to the per-flow fair levels of 5, 3.33, 2.5 and
2 Gbps as the number of competing flows increase from 2 to
5. Also, note that compared to the normal TCP result shown
in Figure 4, TCP-Bolt exhibits far less noise.

2) Head-of-Line Blocking: Perhaps even worse, DCB can
prevent full utilization of available bandwidth if packets of
some otherwise-unencumbered flows are stuck behind packets
of flows crossing a bottleneck. Fig. 10 shows the throughput
of TCP-Bolt flows in the same configuration (Fig. 6) as the
head-of line blocking experiments described in Section II-A.

The DCTCP dynamics of TCP-Bolt allow the flow from
A→ C to once again be able to use all of the spare capacity
not claimed by the flow from A → D. However, the flow
from A → D now only receives half of its fair share of the
link to D. Unfortunately, this is a consequence of DCTCP
dynamics. A DCTCP flow will receive a certain rate of ECN-
marked packets for each bottleneck link it crosses. Thus, a
flow which crosses two such links will receive approximately
twice the number ECN signals and thus back off twice as
often converging to half of its expected fair-share. While the
end-result does not achieve the max-min per-flow fairness that
might be desired, it is a significant improvement over the
bandwidth wasted by head-of-line blocking.

B. TCP-Bolt Performance

1) Testbed performance: To show that TCP-Bolt works on
current commodity hardware, we ran the partition-aggregation
workload on our testbed, although we omit the results due
to space. As expected, using bandwidth-delay product sized
congestion windows with standard TCP hurts the performance
of the incast flows, and, surprisingly, did not significantly im-
prove the throughput of background flows. On the other hand,
TCP-Bolt consistently achieved half the flow completion time
of standard TCP for the incast flows, and for the background
flows TCP-Bolt achieved a speedup curve similar to that shown
in Figure 1, achieving a 2x speedup at the peak of the curve.
However, due to the lack of complicated congestion, both
DCTCP and TCP with DCB and slow start disabled matched
the performance of TCP-Bolt when run on a topology with a
single switch.

7

 0

 500

 1000

 1500

 2000

 2500

 3000

105 106 107

FC
T

Number of Bytes

DCTCP
TCP-DCB
TCP-Bolt

TCP
PktSprayVanillaTCP

pFabric

Fig. 11: Simulation comparison of the normalized 99th percentile
medium flow completion times for different TCP variants. Variants
of TCP and DCTCP wit slow start disabled are omitted for clarity—
results with these variants are very similar to TCP’s performance.

2) Performance at scale: In networks with larger and more
complex topologies, the head-of-line blocking and fairness
problems of DCB may be more problematic than on our
testbed, and congestion can be more complex. We used ns-3 to
consider such a scenario. From our results, we find that TCP-
Bolt consistently achieves fast flow completion times across
the full range of flow sizes, noting that packet scattering is
necessary for achieving the shortest incast flow completion
times. TCP-DCB, which prevents TCP congestion control,
performs about 20x worse than the best performing algorithm
for the short incast flows, and 2x worse for the medium
sized flows. DCTCP, on the other hand, achieves short flow
completion times, but DCTCP is roughly 10x worse than the
best performing variant for the medium sized flows.

There are many individual aspects of TCP-Bolt that all con-
tribute to decreased flow completion times, such as DCTCP,
disabling slow start, DCB, and packet scattering. Our results
indicate that none of the individual benefits of these elements
dominates the others, and that all of them are necessary for
short flow completion times.

Fig. 11 shows the 99th percentile flow completion time
for the short message and background flows, which represent
the range of latency-sensitive background flows that TCP-Bolt
benefits. The number of bytes transferred in the flow is on the
x-axis, and the y-axis is the flow completion time, which is
normalized to the optimal completion time.

We first note that the conservative DCTCP performs consis-
tently more than 10x worse than TCP-Bolt for all of the flow
sizes in the figure. DCTCP-DCB has very similar performance
to DCTCP and is omitted from the figure. pFabric also does
not achieve low flow completion times for short message flows
because incasts transmit more data than the switch buffer sizes,
so pFabric is almost guaranteed to incur a retransmit timeout.

TCP-DCB, where TCP is unable to perform rate control
because packets are never dropped or marked, performs sig-
nificantly better, but it still more than 2x worse than TCP-
Bolt. Although TCP-Bolt has consistently low completion
times, both TCP and the TCP variants that disable slow-start

 2

 3

 4

 5

 6

 7

 2 3 4 5 6 7 8 9

FC
T

SRU (Kilobytes)

TCP
TCP-Bolt
DCTCP

PS-TCP-Bolt
PS-DCTCP

pFabric

Fig. 12: Simulation comparison of the normalized 99.9th percentile
incast completion times for different TCP variants.

 2
 3
 4
 5
 6
 7

 2 3 4 5 6 7 8 9

FC
T

SRU (Kilobytes)

NoSS-DCTCP
TCP-Bolt

PS-NoSS-DCTCP
PS-TCP-Bolt

PktSprayVanillaTCP

Fig. 13: Comparison of the normalized 99.9th percentile incast
completion times for lossy and lossless TCP-Bolt variants.

outperform TCP-Bolt for background flows. This is because
they gain their performance at the expense of the incast flows.

Fig. 12 shows the 99.9th percentile flow completion time
for the incast flows. The x-axis is the SRU for the incast, and
the y-axis is the normalized flow completion time for the 10
replies to be sent to the aggregator. We first note that TCP-
DCB is omitted from this figure because its normalized flow
completion time was always greater than 40. As expected,
TCP performs the worst of all the presented variants, and TCP
without slow start, which is omitted for clarity, matches the
performance of TCP. pFabric also performs similarly to TCP.
Both TCP-Bolt and DCTCP without slow start, which is also
omitted, fail to match the performance of DCTCP, taking about
2x as long instead. Fortunately, as we can see from PS-TCP-
Bolt, which stands for TCP-Bolt with packet spraying enabled,
increasing the congestion window does not hurt performance
if the incast load is balanced over the network.

Due to omissions for clarity, it may not be clear that DCB
is necessary for reducing flow completion times instead of
just enabling DCTCP with packet spraying and without slow
start. Fig. 13 shows the 99.9th percentile flow completion
times for the incast flows with the variants of the DCTCP,
packet spraying (PktSpray), and disabling slow start (NoSS).
From this figure we can see that, with packet spraying, TCP-
Bolt provides a 20% improvement over the equivalent TCP
variant without lossless Ethernet. Although omitted for space,
it is worth noting that packet spraying no slow start DCTCP
performs over 5x worse than TCP-Bolt for some of the
small background flow sizes. This is because enabling packet
spraying requires that TCP fast retransmit be disabled, so

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

#Servers (in Thousands)

ECMP 1:1
EDST 1:1
ECMP 1:2
EDST 1:2
ECMP 1:5
EDST 1:5

Fig. 14: Comparison with ECMP in terms of aggregate throughput
achieved at various sizes.

all packet losses incur a retransmit timeout. When DCB is
enabled, packet losses, and subsequently retransmit timeouts,
do not happen.

C. Impact of Deadlock Free Routing

While we have demonstrated that DCB significantly im-
proves TCP flow completion times, it is also important to
show than enabling DCB on realistic data center topologies
does not significantly affect aggregate throughput. To evaluate
this issue, we use a custom flow simulator.

Fig. 14 compares the aggregate throughput for random
permutation traffic using our EDST deadlock-free routing
scheme to using deadlock-oblivious equal cost multiple path
(ECMP) routing on Jellyfish networks of increasing sizes.
Each curve represents a fixed bisection ratio: 1:1, 1:2, and
1:5 in normalized terms. For the EDST results, we used a
routing algorithm similar to ECMP that randomly selects a tree
from among the trees that offer the shortest routes. We note
that ECMP itself is much higher-performance than traditional
Ethernet, which uses a single spanning tree.

Even in the worst case, 7200 servers, our EDST-based
DFR scheme achieves at least 85% of ECMP’s throughput.
The efficiency gap between our EDST scheme and ECMP
increases marginally with network size because the number
of EDSTs in a topology is a function of network radix and
does not increase with network size. In contrast, increasing
the number of virtual lanes reduces this efficiency gap. As a
result, high performance EDST routing requires more virtual
lanes as the network scale increases for a given switch radix,
but determining this relationship is left for future work. While
there may exist DFR that perform better than our EDST
approach on very large networks, we only claim that DFR
is feasible to implement over commodity Ethernet without
crippling inefficiencies. We leave a comparison across known
DFR schemes and the development of better algorithms to
future work.

D. Discussion

In Section V we showed that packet spraying is necessary
for fast completion times for the incast workload. Although

packet spraying sounds exotic, it can easily be implemented on
existing hardware and networking stacks that support ECMP
by randomizing currently unused Ethernet or IP type fields per
packet. Similarly, hosts may easily perform packet scattering
by using MPTCP [26], or, when our DFR algorithm is used,
hosts may randomize the VLANs that they use per-packet.

Also, even though TCP-Bolt relies on features only found
in modern data center switches, it is still possible to use
TCP-Bolt and safely communicate with hosts on the global
internet. Existing networking stacks already have support for
different segment sizes per subnet, and support can also be
added for different initial congestion window and ECN settings
per subnet. If ECN is disabled and the TCP initial congestion
window is left at the default value, then traffic to the outside
world will behave as normal.

VI. RELATED WORK

Our discussion of related work focuses on efforts to reduce
flow completion times in the data center. We exclude a
lengthy discussion of deadlock-free routing literature because
our only DFR-related claim is feasibility. For those who are
interested, Flich et al. [15] provide a recent survey of deadlock-
free routing techniques. We note, however, that Ethernet
hardware—large forwarding tables, support for VLANs, and
virtual lanes—has allowed us to develop a simple deadlock-
free routing algorithm. The same tools are not all available in
other settings, e.g., Infiniband and on-chip networks.

Like TCP-Bolt, zOVN [23] observes that enabling DCB can
reduce flow completion times. However, their primary focus is
enabling DCB support in vSwitches. Further, they use standard
TCP variants, which we have shown can perform poorly, and
they do not explore the possibility of disabling slow start.

Also like our work, DeTail [4] reduces the tail of flow
completion times in data centers with a new network stack
that uses DCB and packet spraying to balance network load.
However, unlike our work, DeTail continues to use the default
TCP initial congestion window on top of DCB and does not
address deadlock free routing.

pFabric [2] also abandons TCP slow start, relying on a
prioritization scheme to ensure that high priority flows get
short flow completion times. However, pFabric can suffer
from congestion collapse at high loads and larger flows can
potentially suffer from starvation. Further, pFabric requires
changes to hardware to support its queuing and prioritization
mechanisms.

Complementary to our work are transport protocols that
introduce mechanisms to prioritize traffic [7]–[9], [27]. These
protocols approach reducing flow completion times by apply-
ing either a shortest-flow-first, an earliest-deadline-first, or a
least-attained-service schedule.

Remy [28], a new TCP variant, uses machine learning to
design TCP congestion control algorithms. We expect that ex-
tending Remy to support ECN could automatically generate a
congestion control algorithm that outperforms DCTCP, which
would improve the performance of TCP-Bolt.

9

Two other recent proposals for achieving faster flow com-
pletion times are notable: TDMA in the data center [29] and
HULL [10]. The former uses the pause-frame primitive to
implement a TDMA packet schedule for low latency [29].
However, as the authors acknowledge, it is unclear whether an
effective centralized controller can be built to handle arbitrary
topologies and workloads. HULL [10] reduces latency at the
cost of total network throughput but does not attempt to
improve overall flow completion times.

VII. CONCLUSIONS

In this paper, we demonstrate that it is practical to enable
DCB in a fully converged network, despite the many asso-
ciated pitfalls, and that doing so provides flow completion
time benefits. We present both TCP-Bolt, an immediately
implementable TCP variant that utilizes DCB, DCTCP, and
bandwidth-delay product sized congestion windows to achieve
shorter flow completion times, and a novel EDST deadlock-
free routing scheme that works with current commodity Eth-
ernet switches.

In our evaluation of TCP-Bolt, we show that using DCB and
disabling TCP’s conservative initial congestion window on an
uncongested network can reduce flow completion times by 50
to 70%. Next, we use physical hardware to demonstrate that
using DCTCP with DCB resolves the problems of increased
latency, fairness, and Head-of-Line blocking.

We then evaluate the performance of TCP-Bolt against
other TCP variants under a realistic workload. Using physical
hardware, we demonstrate that TCP-Bolt offers 2x lower flow
completion times than TCP. Using ns-3 simulations, we find
that TCP-Bolt performs the best of all of the variants, reducing
flow completion times by up to 90% compared to DCTCP
for medium flow sizes, while simultaneously matching the
performance of DCTCP for short, latency-sensitive flows.

Lastly, while lossless networks come with a risk of dead-
locks, we present a novel deadlock-free routing scheme that
works with current commodity Ethernet switches. This rout-
ing scheme reduces aggregate throughput by less than 15%.
Combined, these techniques offer the possibility for higher-
performance data center networks using commodity switches.

In addition to devising more efficient deadlock-free routing
algorithms, this work can be extended in a number of inter-
esting ways. The DCB feature Priority Flow Control [17] can
be used to ensure the prioritization of latency-sensitive flows.
While we currently use the priority bits for our virtual lanes,
they could serve both purposes or we could use extra VLAN
tag space for virtual lanes. DCB also provides for an interme-
diate switch on a path to send congestion notifications [11],
which should allow hosts be able to react to congestion faster
than waiting for an ACK with an ECN bit set. Lastly, the
receipt of pause frames at an ingress switch or host indicates
congestion along a path, and this information could be used
to shift flows to alternative paths probabilistically.

REFERENCES

[1] Data Center Bridging Task Group, http://goo.gl/v4evY.

[2] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and
S. Schenker, “Deconstructing datacenter packet transport,” HotNets,
2012.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “DCTCP: Efficient packet trans-
port for the commoditized data center,” in SIGCOMM, 2010.

[4] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz, “DeTail:
Reducing the flow completion time tail in datacenter networks,” EECS
Department, University of California, Berkeley, Tech. Rep., 2012.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/
EECS-2012-33.html

[5] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan, “Measurement and analysis of TCP
throughput collapse in cluster-based storage systems,” in FAST, 2008.

[6] Forrester Consulting, “Benefits of SAN/LAN Convergence, 2009.” http:
//goo.gl/gqlDy.

[7] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware datacen-
ter TCP (D2TCP),” in Proceedings of the ACM SIGCOMM, 2012.

[8] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better never
than late: Meeting deadlines in datacenter networks,” in SIGCOMM,
2011.

[9] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in SIGCOMM, 2012.

[10] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is More: Trading a little Bandwidth for Ultra-Low
Latency in the Data Center,” NSDI, 2012.

[11] N. Finn, “IEEE 802.1: 802.1Qau - Congestion Notification,” http://goo.
gl/37kPH, 2005.

[12] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan,
B. Prabhakar, and M. Seaman, “Data center transport mechanisms: Con-
gestion control theory and IEEE standardization,” in Communication,
Control, and Computing, 2008.

[13] P. Prakash, A. Dixit, Y. Hu, and R. Kompella, “The TCP outcast
problem: exposing unfairness in data center networks,” NSDI, 2011.

[14] K. K. Ramakrishnan, S. Floyd, and D. L. Black, “The addition
of explicit congestion notification (ECN) to ip,” Internet Requests
for Comments, RFC Editor, RFC 3168, 2001. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3168.txt

[15] J. Flich, T. Skeie, A. Mejı́a, O. Lysne, P. López, A. Robles, J. Duato,
M. Koibuchi, T. Rokicki, and J. Sancho, “A Survey and Evaluation of
Topology Agnostic Deterministic Routing Algorithms,” IEEE Transac-
tions on Parallel and Distributed Systems, 2011.

[16] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST: Scalable
ethernet for data centers,” in CoNext, 2012.

[17] Data Center Bridging Task Group, “Proposal for Priority Based Flow
Control,” http://goo.gl/wh2Ns.

[18] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network
Data Centers Randomly,” NSDI, 2012.

[19] E. Palmer, “On the Spanning Tree Packing Number of a Graph: A
Survey,” Discrete Mathematics, 2001.

[20] “IBM Rackswitch G8264,” http://goo.gl/YEFJd.
[21] “The ns-3 discrete-event network simulator,” http://www.nsnam.org.
[22] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,

G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and Effective
Fine-grained TCP Retransmissions for Datacenter Communication,” in
Proceedings of ACM SIGCOMM, Barcelona, Spain, Aug. 2009.

[23] D. Crisan, R. Birke, G. Cressier, C. Minkenberg, and M. Gusat, “Got
loss? get zOVN!” in SIGCOMM, 2013.

[24] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“NetLord: A Scalable Multi-tenant Network Architecture for Virtualized
Datacenters,” SIGCOMM, 2011.

[25] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” SIGCOMM, 2009.

[26] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
NSDI, 2011.

[27] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing flow completion times in data centers,” in
INFOCOM. Turin, Italy: IEEE, April 2013.

[28] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” in SIGCOMM, 2013.

[29] B. Vattikonda, G. Porter, A. Vahdat, and A. Snoeren, “Practical TDMA
for Datacenter Ethernet,” EuroSys, 2012.

