A Brief Introduction to SDN and OpenDaylight

Colin Dixon, Principal Engineer, Brocade

colin@colindixon.com (http://colindixon.com)
@colin_dixon

Some content borrowed from David Meyer, Kyle Mestery, Anees Shaikh, and Luis Gomez
Agenda

- What is SDN?
- What is OpenDaylight?
- Some things I’ve learned
- A Few OpenDaylight Metrics
- Where OpenDaylight is Going
- SDN Grand Challenges
Traditional Networking

Per-switch Control Plane
Data Plane

Per-switch Control Plane
Data Plane

Per-switch Control Plane
Data Plane
Control Plane vs Data Plane
Line rate forwarding (Data) vs Slow table management (Control)

Data Plane
- Forwards/modifies packets (ingress-egress pipeline)
- Match-action operations
- Implemented entirely in specialized switch hardware
- Uber fast (10Gbps)

Control Plane
- Determines how to handle packets (fwd, mcast, …)
- Installs rules into HW tables
- Implemented by control processor (firmware)
- Slow as heck (1000s/sec)
Software-Defined Networking

Commodity (x86) Server

SDN Application

SDN Application

SDN Application

Software-defined Network (SDN) Controller

Per-switch Control Plane

Data Plane

Per-switch Control Plane

Data Plane
Modern switches:
- Control plane populates forwarding tables
- Data plane acts based on table entries
 - *Both run locally on the switch*

SDN
- Decouple control plane from the data plane
- Data plane on the switch
- *Control plane elsewhere* (typically separate controller)
- Example: OpenFlow

Software Defined Networks
Migrate the Control Plane to a Separate Controller

- Install table entry, send packet
- Table miss, send to controller

<table>
<thead>
<tr>
<th>dst</th>
<th>port</th>
</tr>
</thead>
<tbody>
<tr>
<td>0E</td>
<td>5</td>
</tr>
<tr>
<td>0A</td>
<td>1</td>
</tr>
<tr>
<td>0C</td>
<td>3</td>
</tr>
</tbody>
</table>
Software Defined Networks
What’s the big deal?

Potential Benefits:
- Enables innovation
- Exploit global ntwk view
 - Traffic engineering
 - Traffic steering
 - Security enforcement
 - ...
- Simpler switches
- Co-manage virtual compute, storage, and network
 - Software-defined environments

Potential Drawbacks:
- Overheads / scalability
- Potential bottleneck
- Potential single point of failure
- Interoperability issues
 - OpenFlow and ONF help
Vertically integrated
Closed, proprietary
Slow innovation
Small industry

Horizontal
Open interfaces
Rapid innovation
Huge industry

Specialized Applications
Specialized Operating System
Specialized Hardware

Windows (OS) or Linux or Mac OS
Microprocessor

Open Interface

McKeown, Hot Interconnects 2012
Vertically integrated
Closed, proprietary
Slow innovation

Horizontal
Open interfaces
Rapid innovation

Specialized Features
Specialized Control Plane
Specialized Hardware

Open Interface
Control Plane or Open Daylight or Control Plane
Merchant Switching Chips

McKeown, Hot Interconnects 2012
Agenda

- What is SDN?
- What is OpenDaylight?
- Some things I’ve learned
- A Few OpenDaylight Metrics
- Where OpenDaylight is Going
- SDN Grand Challenges
What is OpenDaylight

OpenDaylight is an **Open Source Software** project under the **Linux Foundation** with the goal of furthering the adoption and innovation of **Software Defined Networking (SDN)** through the creation of a common industry supported platform.

<table>
<thead>
<tr>
<th>Code</th>
<th>Acceptance</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>To create a robust, extensible, open source code base that covers the major common components required to build an SDN solution</td>
<td>To get broad industry acceptance amongst vendors and users</td>
<td>To have a thriving and growing technical community contributing to the code base, using the code in commercial products, and adding value above, below and around.</td>
</tr>
<tr>
<td></td>
<td>• Using OpenDaylight code directly or through vendor products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vendors using OpenDaylight code as part of commercial products</td>
<td></td>
</tr>
</tbody>
</table>
What is OpenDaylight building?

- An evolvable SDN platform capable of handling diverse use cases and implementation approaches
 - Common abstractions for people to program
 - “Northbound” Interfaces
 - Southbound “drivers”, e.g., OpenFlow, OVSDB, BGP-LS
 - Intermediation between north and south
- Programmable Network services
- Network Applications
- Whatever else we need to make it work
Project Framework
Major Architectural Feature: Service Abstraction Layer (SAL)

Hard SAL (AD-SAL)

MD SAL

RESTCONF APIs
Base Network Service Functions

- Topology Mgr
- Stats Mgr
- Switch Mgr
- Fwding Ruls Mgr
- Host Tracker
- ARP Handler

- GUI
- D4A Protection
- VTN Coordinator
- Neutron Interface

- REST APIs
- NETCONF
- RESTCONF APIs

- OpenDove
- oDMC
- AD-SAL
- D4A Protection
- VTN Coordinator
- Base Network Service Functions
- Affinity
- VTN Mgr
- OpenFlow 1.0
- OVSDB
- CONF
- OF
- Base Network Functions
- BGP PCEP

- LISP
- REST
- OpenFlow 1.0
- SNMP
- OVSDB
- OpenFlow 1.0
- 1.3
- NETCONF
- BGP PCEP

- OpenFlow Enabled Devices
- Open vSwitches
- Additional Virtual & Physical Devices

- LISP
- NETCONF
- BGP PCEP

- OpenFlow
- D4A: Defense for All
- VTN: Virtual Tenant Network
- oDMC: Open Dove Management console
- LISP: Locator/Identifier Separation Protocol
- OVSDB: Open vSwitch DataBase protocol
- BGP: Border Gateway Protocol
- PCEP: Path Computation Element Protocol
- SNMP: Simple Network Management Protocol
Who is OpenDaylight? (Members)

PLATINUM MEMBERS

GOLD MEMBERS

SILVER MEMBERS

www.opendaylight.org
Who is OpenDaylight? (Really)

- Like any Open Source Project, OpenDaylight primarily consists of those who show up to do the work.
 - Currently commits from over 180 contributors from many different organizations (and unaffiliated individuals)

- Running around 150–200 commits per week
 - **30 Days:** 1037 commits, 81 contributors
 - **12 Months:** 8964 commits, 219 contributors

- Strong integration and testing community
 - This stuff *really* matters

http://www.ohloh.net/p/opendaylight
The Hydrogen Simultaneous Release

- First release of OpenDaylight on February 3rd, 2014
 - Codename: Hydrogen
 - 15 different projects
 - Lots of integration and testing

- Several “editions” to group related functionality together
 - base, virtualization, service provider
 - virtualization edition provides OpenStack integration

- We all learned A LOT
Impressive List of Projects in H_2

- Controller
- VTN
- OpenDove
- Affinity Management Service
- LISP Mapping Service
- Yang Tools
- Defense4All
- BGP-LS/PCEP
- OpenFlow Protocol
- OpenFlow SB Plugin
- OVSDB
- SNMP4SDN
- DLUX
Base Edition

Management
GUI/CLI

OpenDaylight APIs (REST)

Base Network Service Functions
- Topology Mgr
- Stats Mgr
- Switch Mgr
- FRM
- Host Tracker
- ARP Handler

Service Abstraction Layer (SAL)
(plugin mgr., capability abstractions, flow programming, inventory, …)

OpenFlow
1.0 1.3

NETCONF
OVSDTB

Controller Platform

Southbound Interfaces & Protocol Plugins

OpenFlow Enabled Devices

Open vSwitches

Additional Virtual & Physical Devices

Data Plane Elements
(Virtual Switches, Physical Device Interfaces)

Network Applications Orchestration & Services

VTN: Virtual Tenant Network
oDMC: open Dove Management Console
D4A: Defense4All protection
LISP: Locator/Identifier Separation Protocol
OVSDTB: Open vSwitch Data Base Protocol
BGP: Border Gateway Protocol
PCEP: Path Computation Element Communication Protocol
SNMP: Simple Network Management Protocol
Type of Document: Network Architecture Diagram

Diagram Description:

- **OpenDaylight APIs (REST)**
 - OpenFlow
 - 1.0
 - 1.3
 - NETCONF
 - OVSDB

- **Base Network Service Functions**
 - Topology Mgr
 - Stats Mgr
 - Switch Mgr
 - FRM
 - Host Tracker
 - ARP Handler
 - Affinity Service
 - OpenStack Service
 - OVSDN Neutron
 - VTN Manager
 - oDMC

- **Service Abstraction Layer (SAL)**
 - (plug-in mgr., capability abstractions, flow programming, inventory, …)

- **OpenFlow Enabled Devices**
 - VTN: Virtual Tenant Network
 - oDMC: open Dove Management Console
 - D4A: Defense4All protection
 - LISP: Locator/Identifier Separation Protocol
 - OVSDB: Open vSwitch Data Base Protocol
 - BGP: Border Gateway Protocol
 - PCEP: Path Computation Element Communication Protocol
 - SNMP: Simple Network Management Protocol

- **Open vSwitches**

- **Additional Virtual & Physical Devices**

Controller Platform

Southbound Interfaces & Protocol Plugins

Network Applications Orchestration & Services

OpenDaylight Management

GUI/CLI
Base Network Service Functions

- Topology Mgr
- Stats Mgr
- Switch Mgr
- FRM
- Host Tracker
- ARP Handler

Service Abstraction Layer (SAL)

- (plug-in mgr., capability abstractions, flow programming, inventory, …)

OpenDaylight APIs (REST)

Controller Platform

Southbound Interfaces & Protocol Plugins

Data Plane Elements

- (Virtual Switches, Physical Device Interfaces)

OpenFlow Enabled Devices

- Open vSwitches

Open vSwitches

Additional Virtual & Physical Devices

Network Applications Orchestration & Services

- D4A Protection

OpenFlow

- 1.0
- 1.3

NETCONF

OVSDB

SNMP

BGP

PCEP

LISP

VTN: Virtual Tenant Network
oDMC: open Dove Management Console
D4A: Defense4All protection
LISP: Locator/Identifier Separation Protocol
OVSDB: Open vSwitch Data Base Protocol
BGP: Border Gateway Protocol
PCEP: Path Computation Element Communication Protocol
SNMP: Simple Network Management Protocol
OpenStack Integration

- OpenDaylight exposes a single common OpenStack Service Northbound
 - API exposed matches Neutron API precisely
 - multiple implementations of Neutron networks in OpenDaylight

- OpenDaylight OpenStack Neutron Plugin simply passes through
 - simplifies OpenStack plugin
 - pushes complexity to OpenDaylight
OpenStack Integration: Status

• **ML2 Driver available in Icehouse release!**
 • Supports VXLAN and GRE tunnel networks
 • devstack support merged upstream
 • *Run OpenDaylight as a top-level service in devstack!*
• **OpenStack Neutron API Service** available now in OpenDaylight
 o provides Neutron API handling for multiple implementations
• Initial ML2 plugin focused on core Neutron functionality
 o Still uses Neutron [DHCP, L3] agents
OpenStack Integration: Next Steps

- Updates planned for Helium and Juno:
 - VIF plugging changes for stability improvements
 - Notify from ODL to MechanismDriver once ODL has setup the port on the host
 - Security groups implemented using OpenFlow rules
 - L3 routing handled by OpenDaylight
 - Removes the need for the L3 agent
 - Additional refinements and bug fixes
Agenda

- What is SDN?
- What is OpenDaylight?
- Some things I’ve learned
- A Few OpenDaylight Metrics
- Where OpenDaylight is Going
- SDN Grand Challenges
Key Learnings

• **Community building** is a core objective
 - In fact, innovation through collaboration is one of the most powerful features of open source development

• **Code** is the coin of the realm

• **Engineering systems** are as important as artifacts

 Putting this all Together ➔

http://www.sdncentral.com/education/david-meyer-reflections-opendaylight-open-source-project-brocade/2014/03/
Trend: Engineering artifacts are no longer the source of sustainable advantage and/or innovation

Perhaps surprisingly, the “hyper-scale” and open source communities have taught me that actual artifacts (in our case network applications as well as HW/SW) are ephemeral entities and that the only source of sustainable advantage/innovation consists of:

- Engineering Systems
- Culture
- People/Process

What you build isn’t as important as how you build it.

http://en.wikipedia.org/wiki/Aeroelasticity - Flutter
Factories vs. Babies

- “Most vendors **develop product like an overly anxious parents making a baby.** There is a lot preparation and planning and once the baby is “born” the product requires ongoing attention to reach maximum potential.”

- “By comparison, … has **organized itself as a product factory.** Each product is the result of a unified production line and the next product or feature is just a year or two away. Each product builds on the previous product.”

- Even faster in open source software.
- Networking hasn’t seen this yet.

http://etherealmind.com/difference-arista-competitors-factories-babies/
One way to think about open source development: Early on things are chaotic, there is a lot of stuff orbiting anything with enough gravity, there are epic collisions and everything is molten (e.g., like the surface of the earth during the LHB [0]). But if you wait a couple of billion years and let things evolve you can wind up with a beautiful blue planet or the Linux kernel or ...

[0] http://en.wikipedia.org/wiki/Late_Heavy_Bombardment
Transparency

- Transparency matters

- When there are disagreements in the community
 - Transparency makes everyone feel heard
 - Transparency makes sure the community does not fracture

- OpenDaylight is transparent to the extreme
 - All calls, mailing lists, wikis, etc. are open to the public
 - Even the technical steering committee calls
Agenda

- What is SDN?
- What is OpenDaylight?
- Some things I’ve learned
- A Few OpenDaylight Metrics
- Where OpenDaylight is Going
- SDN Grand Challenges
OpenDaylight project creation

7 new project proposals pending

Slides courtesy of Anees Shaikh:
https://www.youtube.com/watch?v=fKC6WGcEjHE
http://events.linuxfoundation.org/sites/events/files/slides/OpenDaylight-Year1%20v4-ext.pdf
OpenDaylight code volume (ohloh.net)

Languages

<table>
<thead>
<tr>
<th>Total Lines</th>
<th>Code Lines</th>
<th>Percent Code Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,548,552</td>
<td>1,045,938</td>
<td>67.5%</td>
</tr>
<tr>
<td>Number of Languages</td>
<td>Total Comment Lines</td>
<td>Percent Comment Lines</td>
</tr>
<tr>
<td>18</td>
<td>322,675</td>
<td>20.8%</td>
</tr>
<tr>
<td></td>
<td>Total Blank Lines</td>
<td>Percent Blank Lines</td>
</tr>
<tr>
<td></td>
<td>179,939</td>
<td>11.6%</td>
</tr>
</tbody>
</table>

Code, Comments and Blank Lines

Zoom 1yr | All

Graph showing code growth from 2013 to 2014 with languages Java, C++, C, and Python.

www.opendaylight.org
Project comparisons (ohloh.net)

In a Nutshell, OpenDaylight...

- has had **4,759 commits** made by **154 contributors**
 - representing **1,045,938 lines of code**
- is mostly written in Java
 - with an average number of source code comments
- has a young, but established codebase
 - maintained by a very large development team
 - with stable Y-O-Y commits
- took an estimated **292 years of effort** (COCOMO model)
 - starting with its first commit in November, 2012
 - ending with its most recent commit 13 days ago

<table>
<thead>
<tr>
<th>Project</th>
<th>LOC</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenStack</td>
<td>1.67M</td>
<td>1,974</td>
</tr>
<tr>
<td>CloudStack</td>
<td>1.5M</td>
<td>250</td>
</tr>
<tr>
<td>Eclipse platform</td>
<td>2.67M</td>
<td>404</td>
</tr>
<tr>
<td>OpenDaylight</td>
<td>1.05M</td>
<td>154</td>
</tr>
<tr>
<td>Floodlight</td>
<td>97K</td>
<td>52</td>
</tr>
<tr>
<td>contrail-vrouter</td>
<td>19K</td>
<td>15</td>
</tr>
<tr>
<td>contrail controller</td>
<td>258K</td>
<td>53</td>
</tr>
</tbody>
</table>
Membership — who wants to play

35

28

big switch

26

Brocade

23

PLEX

22

INOCYBE

TECHNOLOGIES

21

HP

18

IBM

17

Juniper

13

NEC

12

VMware

11

Intel

10

Arista

9

Nuage Networks

8

Plumgrid

7

Fujitsu

6

open networking

5

PLUMgrid

4

EC2

3

AWS

2

Microsoft

1

Red Hat

0

April 8 launch

June 3

June 5

June 15

October 3

January 16

February 4

www.opendaylight.org
Agenda

- What is SDN?
- What is OpenDaylight?
- Some things I’ve learned
- A Few OpenDaylight Metrics
- Where OpenDaylight is Going
- SDN Grand Challenges
Current Projects

14 more project proposals in some state of preparation

- Controller
- Virtual Tenant Network (VTN)
- Open DOVE
- OpenFlow Plugin
- Affinity Metadata Service
- YANG Tools
- LISP Flow Mapping
- OVSDDB
- OpenFlow Protocol Library
- BGP-LS/PCEP
- Defense4All
- SNMP4SDN
- Integration Group
- Dlux
- Group-based Policy
- OpenDaylight Toolkit
- PacketCable PCMM
- OpFlex Implementation
- Documentation
- Dynamic Resource Reservation
- Table Type Patterns (TTPs)
- SDNi
- OpenContrail

Red are new since Hydrogen

https://wiki.opendaylight.org/view/Project_Proposals:Main
Other Future Technical Work

- Core Infrastructure
 - Factoring apart the controller, e.g., MD-SAL, etc.
 - Data Persistence, DOM manipulation, etc.
 - Distributed Systems (Infinispan, Akka, …)
 - Performance, Scalability, Stability
 - Code Quality, Test Coverage,

- Python OpenDaylight Client

- We need more code that writes code
 - MD-SAL is an example
 - Fewer humans in the loop
 - More automation is more better
Non Technical Work

- Continue to build/refine our community
 - Increasing committer diversity across projects
 - Weekly status meetings
 - More transparency is more better
 - “Staffing”
 - Release engineering
 - Documentation

- Continue to refine our engineering systems
 - Thanks Andrew!
 - Fewer humans in the loop
 - SDN Simulation Platform
Agenda

- What is SDN?
- What is OpenDaylight?
- Some things I’ve learned
- A Few OpenDaylight Metrics
- Where OpenDaylight is Going
- SDN Grand Challenges
Centralized vs. Distributed (Consistency, Clustering and Federation)

- SDN promises a (logically) centralized control plane

- In practice, we have a distributed cluster of controllers, rather than just one so that
 - we can tolerate faults
 - we can scale out our performance
 - in network partitions there are controllers on both sides

- Providing consistency, federation, scale-out, dealing with CAP trade-offs, etc. is **HARD**

https://www.youtube.com/watch?v=XQ-InB3x30g
How do we deploy SDN when it’s not green field
 - Because pretty much nothing is actually green field

 - Hybrid switches, hybrid networks, legacy protocols for interop, etc.

Trust and stability
 - Current networks build on 40 years of code/experience
 - How can SDN compete with that?
 - Borrow good code/ideas from legacy code
 - Provide better visibility, debugging, etc.
 - Model checking, verification, etc.
Hardware Diversity

- OpenFlow 1.0 provided a lowest common denominator API
 - Real hardware is much more diverse
 - and has many more capabilities

- Exposing this diversity without burdening developers with per-device programming is hard

- Some Attempts
 - Programming Protocol-Independent Packet Processors
 - TTPs from the ONF’s FAWG

https://www.youtube.com/watch?v=bcaBS6w_k_o
http://events.linuxfoundation.org/sites/events/files/slides/TTPs%20and%20NBIs%20for%20ods2014-final_0.pdf
Application Composition

- How can we let multiple SDN apps share the network?
 - PC OSes partition and allocate resources
 - You can’t easily partition the network
 - It’s value comes from the fact that it spans everything
 - You can in some cases, e.g., by address space (FlowVisor)

- Some ideas
 - Most apps should be middleboxes, i.e., NFV
 - Simply chain them together in the right order
 - There’s more to it than this, but linear chaining is powerful
 - Other apps are concerned only with the physical path
 - There is hope that conflicts here can be sanely managed
Conclusions

- OpenDaylight is a rapidly growing open source community
 - Already shipping a large suite of tools to build SDN solutions
 - By most metrics, on-par with other successful open source

- Community, process and culture matters more than code
 - Focus on being able to adapt, fix, and ship the next thing

- SDN Grand Challenges
 - Centralized vs. Distributed
 - How to get there from here
 - Hardware Diversity
 - Application Composition